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Abstract. We presentsKizzo , a system designed to evaluate and certify Quantified Boolean
Formulas (QBFs) by means of propositional skolemization and symbolic reasoning.

1 Introduction

We presentsKizzo [2,3], a software suite for dealing withQuantified Boolean Formulas(QBFs).
sKizzo is mainly aimed at evaluating prenex CNF formulas by means of a novelsymbolic skol-
emizationtechnique[4]. In addition, it enables the user to (A) experiment withquantifier trees[6],
(B) certify the (un)satisfiability of formulas[5] and (possibly) extractunsatisfiable cores, and (C)
compute, manage, and query stand-alone certificates of satisfiability for QBFs. Both quantifier tree
extraction and answer certification have never been attempted so far on QBFs.

At the hearth ofsKizzo stays a new kind of symbolic representation for clauses and formulas,
based onBinary Decision Diagrams(BDDs). As opposed to previous BDD-based approaches to
propositional logic,sKizzo ’s one employs a two-level data structure [2] designed to take advantage
of the distinguishing features of QBFs. Besides allowing for a novel style of (complete/incomplete)
symbolicreasoning, such representation makes it possible to unify within a coherent framework
all the other approaches to QBF-satisfiability implemented so far. Namely: DPLL-like branching
reasoning, q-resolution based algorithms, and compilation-to-SAT techniques.

2 Representation of QBF Instances and Data Structures
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Three representation spaces for QBFs coexist withinsKizzo . They are intercon-
nected by two satisfiability-preserving trasformations (applied one-way), as re-
ported in the picture aside. The first transformation leveragesouter skolemiza-
tion to map any (prenex CNF) instanceF ∈ QBFs onto a symbolic formula
F = SymbSk(F ), which is said to besymbolicas it couples list-based and BDD-
based data structures to compactly represent a (possibly) exponentially less succinct
propositional formula. The sentenceF encodes the definability of a set of Skolem
functions that capture a model (if any) of the original instance, according to the
symbolic skolemizationtechnique presented in [4]. A formal semantics is associ-

ated to symbolic formulas in such a way thatF
sat≡ SymbSk(F ) for everyF . The

other transformation—calledgroundization—translates a symbolic formulaF into
a purely existential CNF propositional instanceProp(F) (a SAT problem) such

thatF
sat≡ SymbSk(F )

sat≡ Prop(SymbSk(F )). The role of these representations
is as follows: Plain QBFs are handled in a pre-processing phase. Then,sKizzo
moves to the symbolic representation and performs most of its work thereon. Zero
or more CNF instances are generated/solved during the whole process (Section 2).
Symbolic skolemization (and most of the processes described below) relies on the
existence of aquantifier treestating which existential variables are in the scope of
which universal variables. Such tree-shaped structures are extracted out of the flat



prenex input according to [6]. They replace linear prefixes so to more closely reflect the intrinsic
dependencies in the matrix. A sample quantifier tree for the QBF∀a∀b∃c∀d∀e∃f∃g∃h.(a∨¬c) ∧ (a∨
h) ∧ (c∨¬d∨g) ∧ (¬a∨b∨f) ∧ (¬a∨c∨e∨¬h) ∧ (¬b∨¬f) ∧ (a∨c∨¬g) is depicted aside.
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The symbolic representation is designed to allow for efficient
forms of symbolic reasoning(Section 2), where universal
reasoning is taken apart form existential reasoning (ROBDDs
conveniently deal with the former, list-based representations
with the latter). A symbolic formula is made up by symbolic
clauses. During symbolic skolemization, one symbolic clause
is extracted out of each QBF clause. The two major compon-
ents of a symbolic clauseΓI are a listΓ of existential literals
and an index-setI represented via a ROBDD whose support
set is the set of universal variables dominating the existential
node at which the clause is attached in the quantifier tree. For
example, the symbolic clauses[h]{00,01} and [c,¬h]{10} are
extracted out ofa ∨ h and¬a ∨ c ∨ e ∨ ¬h respectively (see
the picture). Each symbolic clauseΓI compactly represents a
setProp(ΓI) (with cardinality |I|) of ground propositional
clauses, in such a way thatF is sat iff Prop(F) is sat. For
example,Prop([c, g]{01,10}) = {c0∨g01, c1∨g10}. Thesym-
bolic sizeof F is |F|, itsground sizeis |Prop(F)|: The initial
symbolic size ofF is thus linear in|F |. For details, see [4].

3 Inference Strategy
The inference strategyfollowed bysKizzo changes as the solution process goes on. Its evolution
is described by a finite state machine whose inference statesSinf = {G, S, R, B, G} are traversed.

Q: Ground  
     QBF
     Reasoning

S:  Incomplete  
     Symbolic    
     Reasoning

B: Symbolic 
     Branching  
     Reasoning

G: SAT-based  
     CNF
     Reasoning

R:  Complete  
      Symbolic    
      Reasoningsy
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Each state inSinf is associated to the application of aninference style. Each transitionx → y in the
picture,x, y ∈ Sinf , is labeled by a condition that triggers the shift from the stylex to y (possibly
requiring a satisfiability-preserving transformation).We now describe each state and transition.

Q: Ground QBF Reasoning

Q1:  Normalization

Q3:  Bounded Var.

        Elimination 

Q2:  Tree Recon-

         struction

S

Q: Ground QBF Reasoning. In the Q-statesKizzo works in the ori-
ginal QBF space, as represented aside. The stepQ1 amounts to apply the
quantified form of three simple (incomplete) inference rules:unit clause
propagation, pure literal elimination, and forall-reduction. The transition
Q1 → Q2 is triggered when all these rules reach their fixpoint. Bounded
variable elimination (Q3) appliesq-resolutionto eliminate a selected exist-
entially quantified variablev in the deepest existential scope of some branch
of the quantifier tree. This is done by substituting all the clauses containing
v with the set of all the resolvents overv. As repeated applications of vari-
able elimination often lead to an unmanageable explosion of the number of
clauses, aboundedform of elimination is employed: Only variables whose elimination shrink the
overall number of literals or clauses are eligible for elimination. The transitionQ3 → Q1 is selected
when at least one variable has been eliminated during the last round,Q3 → S is followed otherwise.



S: Incomplete Symbolic Reasoning.The instance is attacked by means of a set of (incomplete)
symbolic inference rules, designed after their ground counterparts to achieve in one single application
on symbolic clauses the same result they would obtain if applied to each ground clause separately.

SUCP (Symbolic Unit Clause Propagation). This rule builds on top of the observation that each
symbolic unit clause[γ]I in the formula represents a set{γi|i ∈ I} of ground unit literals. All
of them are symbolically assigned at once to avoid an immediate contradiction.

SPLE (Symbolic Pure Literal Elimination). This rule computes a symbolic representation for the
set of pure literals, then simplify the formula by assigning all of them at once. It comes in two
flavors: a monolitic (one variable per step) and an incremental (one clause per step) version.

SSUB (Symbolic SUBsumption). This rules removes all the symbolic clauses that are subsumed by
other clauses (forward subsumption). It employs scheduling heuristics, lazy computations, and a
signature-based mechanism to minimize the overall effort. This rule complements thebackward
subsumptionmechanism which is applied on-the-fly at each clause insertion.

SHBR (Symbolic Hyper Binary Resolution). This rules enumerates all the resolution chains of bin-
ary symbolic clauses in the formula, looking for contradictions. Each such contradiction determ-
ines a necessary consequence of the formula, compactly represented as a unit symbolic clause
which is added to the instance (SUCP then draws all the entailed consequences).

SER (Symbolic Equivalency Reasoning). This rules look for non-empty strongly connected com-
ponents in thesymbolic binary implication graph[2] of the formula. Each such component de-
termines a symbolic equivalence which is applied to simplify the formula.

A carefully designed application schedule is necessary to profit from the above set of rules as a
whole.sKizzo implements a dynamic scheduling policy which works as follows.

1. The inference process is divided into subsequentinference rounds. At each round, the rules that
have the rights to do so (see below) are sequentially executed.

2. The rule currently working is monitored during its execution. When certain resource limits are
exceeded (inference steps undertaken, time elapsed, memory allocated, etc.), the rule is pree-
mptively stopped (the rule’s context is saved to re-start working from the interruption point).

3. When all the rules in the inference round have been executed, they are ranked according to their
relative efficiency. The resource limits for the next rounds are re-distributed on a meritocratic
basis: the better a rule has proved to be, the larger the resources it will be granted next.

4. In addition, rules failing to be effective loose the right to execute for a number of inference steps
that enlarges with the number of rounds they have been performing poorly. The longer they keep
on being ineffective, the more sparingly they are given a try.

The assessment of rules’ efficiency is a major issue in the above policy. As all the rules reduce the
ground size of the instance at each application (conversely, the symbolic size might be enlarged), the
ground-size-shrink-percentage-per-resource-unit is assumed as a measure of efficiency. This meas-
ure needs itself resources to be computed. When BDD primitives and lazy evaluation do not suffice
to keep the cost of assessment within pre-established limits,sKizzo resorts to approximated meas-
ures. The transitionS → G is triggered if the ground size of the current problem becomesaffordable
via SAT-based reasoning (see theG-style), unless the symbolic reasoning is behaving so efficiently
that ground reasoning is estimated not to pay back. The transitionS → R is activated when the rules
adopted come out to be unable to solve the problem. This happens under two circumstances: (1) the
overall fixpoint is reached but no decision is obtained, or (2) the rate at which the problem is being
shrunk has been staying below a certain threshold since a given number of inference rounds.

R: Complete Symbolic Reasoning.This state is similar toS, with one major exception: a refuta-
tionally complete rule is inserted in the pool of symbolic rules exercised at each inference round.



SDR (Symbolic Directional Resolution). This rules eliminates one symbolic variable per step by
substituting the set of resolving clauses with the set of their symbolically computed resolvents.

Efficiency as size-shrinking measurement is unfair for SDR. This rule may need to pass through
intermediate clause-sets that are much larger than the originating instance to come to a solution. So,
SDR is given the change to consume more and more resources regardless of the size of the formula it
is constructing. The other rules are still applied/evaluated in a round robin way (SSUB is especially
useful here to reduce the redundancy SDR generates). Two outcomes are possible: (1) the largest
intermediate result fits within the physical memory of the machine on which sKizzo is running—so
the instance is solved, or (2) an out-of-memory condition occurs. AssKizzo keeps on monitoring
its own resource consumption, he is able to detect the latter occurrence and give up resolution-based
reasoning. The transitionR → B is triggered. As usual, the transitionR → G is followed if (and as
soon as) the current problem becomesaffordablevia SAT-based reasoning (see theG-style).

A checkpointing mechanism is implemented against the unlucky possibilities that no consistent
formula representation exists when mem-out occurs, or the formula yielded by SDR is so larger
than the input formula that we would prefer to restart working on the original version: Symbolic
formulas have to be explicitly committed or rolled-back depending on their eventual characteristics.
This ensures that blow-up phenomena do not negatively affect the rest of the inference process.

B: Branching Reasoning. In this status, a search-based branching decision procedures extending
the DPLL approach to the quantified case is applied. Models are searched following the left-to-right
prefix order of variables during a depth-first visit of the semantic evaluation tree of the formula.
Existential variables generateor nodes that disjunctively split the branch, universal quantifiers are
associated toandnodes that split branches conjunctively. Distinguishing features ofsKizzo :

– Both universal and existential splits are performed symbolically.
– The partial order induced by the internal structure of the quantifier tree is substituted for the

left-to-right order of variables in the prefix. The main advantage is that nodes with more than
one child induce sets ofdisjoint sub-instances that are solved in isolation of one another.

– After each existential split, the cofactored matrix undergoes further incomplete symbolic nor-
malization (transitionB → S and back). This mechanism extends the unit-clause-propagation
based form of look-ahead used in purely branching solvers.

– The base case of the recursion does not deal with trivial sub-formulas. Well in advance, either
symbolic reasoning (transitionB → S, whenever the current instance falls within its deductive
power) or ground reasoning (transitionB → G, whenever the ground version of the problem is
affordable) decide every sub-instance, acting as powerful look-ahead tools.

Many enhancements to the basic DPLL procedure are implemented. A conflict-analysis machinery is
employed in the event of inconsistent partial assignment to isolate the branching steps responsible for
the contradiction to arise. This information is used to perform a conflict-directed backjumping. As
contradictions follow in general from a mix of branching steps, symbolic reasoning, and SAT-based
reasoning, the three of these inference styles share a common conflict-analysis engine. A symbolic
learning mechanism extracts symbolic clauses out of contradictions (useful to prune the rest of the
search). Size-bounded and relevance-bounded heuristics are used to constraint the required amount
of memory. Branching heuristics are also enrolled: MOMS and VSDIS are implemented.

G: SAT-based Ground Reasoning.In theG-state we explicitly constructProp(SymbSk(F )) and
solve it via state-of-the-art SAT solvers (they come out to be very efficient on such instances). This
amounts to (1) build an encoding from the structured namespace of symbolic literals/clauses onto a
flat propositional space, (2) generate all the necessary clauses, (3) make the SAT solver handle the
resulting instance: Quite some “almost-existential” families of instances are successfully dealt with
in theG status (hash-table based mechanism are implemented to make the translation fast).



A transitionx → G, x ∈ {S, R, B}, is triggered as soon as the groundization of the current
formula becomesaffordable. At the beginning, this notion is simply given in terms of memory re-
quirements: The ground version of the instance fits into the memory and leaves enough space for the
SAT solver to work. By construction, the transitionsx → G, x ∈ {S, R} are triggered at most once,
yielding an instance SAT-equivalent to the original QBF problem. Conversely,B generates a (pos-
sibly) long chain of SAT instances, each one encoding the outcome of the exploration of an entire
sub-tree of the QBF semantic evaluation tree. Along this chain, the notion of affordability is adjusted
by a learning algorithm that tries to guess the optimal switch size betweenB andG. Furthermore, for
theG-state to actively participate in conflict analysis, we map unsatisfiable ground cores (extracted
by analyzing the ground inference trace) onto symbolic cores, then onto branching choices.

4 Certification

sKizzo implements a mechanism to certify its claims of (un)satisfiability. Evaluation and certi-
fication are completely decoupled, with almost no overhead for the former. The two meshes of the
chain are connected through aninference log, produced by the solver and subsequently red by an
externalcertifier. The log contains information about (1) the context switches between inference
styles, (2) the sequence of the (symbolic) instantiations of inference rules undertaken (resolutions,
substitutions, assignments), (3) entries for rollback/commit points and other control information.
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By reading the log forward, the certifier is able to
reproduce the derivation of the empty clause (unsat
instances) and its graph of dependencies, thus ex-
tracting an unsatisfiable core. Onsat instances, the
certifier applies aninductive model reconstruction[5]
procedure while parsing the log backward. It con-
structs a stand-alone, BDD-basedsat-certificate en-
coding a QBF model. As an example, the picture aside depicts thesat-certificate pro-
duced for∀a∀b∃c∀d∃e∃f. (¬b∨e∨f)∧ (a∨c∨f)∧ (a∨d∨e)∧ (¬a∨¬b∨¬d∨e)∧ (¬a∨b∨¬c)∧
(¬a∨¬c∨¬f)∧ (a∨¬d∨¬e)∧ (¬a∨d∨¬e)∧ (a∨¬e∨¬f). It is possible to verify that a model is
encoded into such certificate: By assigning the existential variablee (similarly for c andf ) to TRUE
whene+(a, b, d) = 1 and to FALSE whene−(a, b, d) = 1 the matrix is always satisfied.
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Fig. 1. Number of instances solved (Y axis) for each timeout up to 1000s (X axis). Solvers:QuBE-LRN [8],
v. 1.3, a search-based solver featuring lazy data structures for unit clause and pure literal propagation, plus
conflict and solution learning.Quantor [7], v. 2004.01.25, a solver employing q-resolution and expansion
to eliminate quantifiers, plus optimizations to improve efficiency.SEMPROP[10], v. 24.02.02, a search-based
solver featuring directed backtracking and lemma/model caching.yQuaffle [11], v. 09.30.04, a search-based
solver featuring multiple conflict-driven learning, inversion of quantifiers and solution-based backtracking.



Instance ∀ ∃ Al. Ts

adder12 942 1722 3 190.0
adder141281 2359 3 670.0
adder161672 3096 3 1200.0
cnt09re 9 609 18 259.6
cnt10r 10 704 20 67.5
cnt10e 10 704 20 923.1
cnt11r 11 840 22 190.38
cnt12r 12 988 24 548.68

Instance ∀ ∃ Al. Ts

cnt15 15 1457 30 33.2
cnt16 16 1650 32 44.7
s713_d3_s 791 3098 2 384.7
s499_d7_s 896 4039 2 107.5
s499_d10_s1355 5971 2 493.1
s386_d3_s 312 1467 2 23.9
s386_d4_s 471 2118 2 631.0
s386_d5_s 630 2769 2 795.3

instance ∀ ∃ Al. Ts Tr Tv |L| |C|
adder-16 1672 3096 31200.0 2025.2 1.13.5·103 2.4·105

Adder2-10 545 7424 5 360.0 97.8 0.18.5·103 6.1·104

cnt09re 9 609 18 280.0 0.4 0.15.8·103 9.0·101

cnt16 16 1650 32 45.0 36.0 0.13.4·105 5.9·102

k_grz_n18 24 767 16 55.0 0.8 0.11.8·103 3.2·103

k_poly_n18 110 1354 112 4.8 11.6 0.14.5·103 1.1·103

k_ph_n15 10 4833 4 86.0 1.5 0.41.1·104 2.8·103

k_d4_n16 69 1368 40 11.0 149.0 0.31.1·104 4.8·104

Table 1. On the left: some2004-hardinstances (i.e. remained unsolved during the SAT04 evaluation of QBF
solvers) solved bysKizzo . On the right: evaluation compared to SAT-certification. We report: the number
of existential (∃) and universal (∀) variables, the number of quantifier alternations (Al.), the time taken to
solve/reconstruct/verify (Ts,Tr,Tv), the number|L| of steps in the log and of nodes|C| in the certificate.

5 Implementation and experimentation
sKizzo is a 50k-line piece of code written in C using an object-oriented programming style. It
has been developed on a PowerPC/MacOS X platform, then migrated to i386/Linux. It relies on
the CUDD package 2.4.0 and DDDMP 2.0 for BDD manipulations, and on zChaff 2004.5.13 and
siege v4 for SAT solving. Command-line options allow the user to individually (de)activate inference
rules, and to constructsolving personalitiesby forbidding the visit of some states of the inference
FSM. Syntactic trees, CNF instances and certificates may be dumped to secondary memory.

The experimental evaluation of our suite involves the assessment of the relative strengths of
different solving personalities and an analysis of how certification performances relate to solving
performances. This yields a large amount of data, for which we refer the reader to [3].

Here we limit our presentation to a performance comparison (shown in Figure 1 and performed
on a 2.6 GHz P4, 1Gb main memory, running Linux v2.4) betweensKizzo and the best publically
available state-of-the-art QBF solvers [9] over two challenging groups of QBF instances extracted
from the QBFLIB’s archive [8]: Biere’s benchmarks [7], made up of 64 instances divided into 4
families, where then-th instance in each family refers to a model checking problem on an-bit
counter, and Ayari’s benchmarks [1], made up of 72 instances divided into 5 families, obtained from
real-world verification problems on circuits and protocol descriptions.

Table 1 presents a few more results showing thatsKizzo has solved instances never solved
before. In addition, the results concerning SAT-certificate extraction suggest that certification is ac-
tually feasible. Although QBF verification cannot be in general accomplished in polynomial time,
the task of building and verifying a certificate comes out not to be overwhelming on application-
related instances:sKizzo has been able to certify all the satisfiable formulas it has solved. Also,
memory requirements for certificates are within the capabilities of current machines.
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