
Istituto per la Ricerca Scientifica e Tecnologica (IRST)
Via Sommarive 18, 38055 Povo, Trento, Italy

User Manual

(Manual v0.4, documenting solver v0.8-beta, rev. 257)

Marco Benedetti
mabene@gmail.com

20th October 2005

Contents

1 Introduction 3
1.1 Contact and feedback .3

2 How to launchsKizzo 4

3 Command-line options 5
3.1 Options that modify the personality of the solver5
3.2 Options to tune theQ style (qbf reasoning) . 6
3.3 Options to tune theS style (incomplete symbolic reasoning)7
3.4 Options to tune theR style (complete symbolic reasoning)10
3.5 Options to tune theB style (branching reasoning)10
3.6 Options to tune theG style (SAT-based reasoning)10
3.7 Options to control memory usage .11
3.8 Options to makesKizzo stop on certain occurrences12
3.9 Options to control verbosity, dumping, logging12
3.10 Miscellaneous options .13

4 Batch mode 14
4.1 Order of processing .14
4.2 Return values .14
4.3 Timeouts .14
4.4 Interaction among solution processes .15
4.5 Commandline parameters .15
4.6 Reporting .16

5 Notes on run-time behavior, memory consumption, solving personalities 18
5.1 Tuning your solving personality .18
5.2 Memory consumption .18
5.3 Shell commands .19
5.4 Multiprocessing .19

6 sKizzo ’s internals 20
6.1 Overview .20
6.2 Problem Representation .20
6.3 Inference Strategy .21

References 23

Appendix A: Copyright and License 24

2

1 Introduction

sKizzo is a QBF solver, i.e. a program designed to decide whether or not a givenQuantified
Boolean Formulahas at least one model. It works with formulas inprenex conjunctive normal
form represented in the DIMACS 1.1 format. The simplest possible usage ofsKizzo (given a
myInstace.qdimacs file containing a QBF of interest) consists in issuing the command:

sKizzo myInstance.qdimacs

and wait for a TRUE/FALSE answer (see Section 2). Advanced users can:

• Customize the behavior of the solver using the options documented in Section 3.

• UsesKizzo in conjunction with the companion tools1 ozziKs and libQBM to certify the
(un)satisfiability of formulas, extract unsatisfiable cores, manage and query stand-alone
certificates of satisfiability (models) for QBFs.

This manual is organized as follows:

• Section 2 gives details on the input/output behavior of the solver (commandline syntax and
exit values).

• In Section 3 we present and discuss some options useful to customize the behavior of the
solver.

• Section 4 shows how to make the solver process a set of instances instead of just one.

• Section 5 contains notes about the run-time behavior of the solver and its customization.

• In Section 6 we give a brief introduction to the data structures and algorithms used by
sKizzo, with the aim to make the user able to understand the meaning of the commandline
options.

1.1 Contact and feedback

At present,sKizzo (version 0.8-beta, revision 257) is in beta testing. Feedback from users is
welcome on both the solver and its documentation. Please send an e-mail to

mabene@gmail.com

mentioning “sKizzo” in the subject in case you:

• are able to make the solver crash under specific, reproducible circumstances.

• have problems solving some “reasonbably-sized” instance you were expecting to be able
to solve withsKizzo.

• find errors in the documentation.

• observe any unexpected behavior of the solver.

• need hints on personality tuning (Section 5.1).

• miss some feature you would like to see in future releases of the software.

• encounter any circumstance or are able to give any suggestion that could help to improve
the solver or its documentation.

1Not yet available for download.

3

2 How to launchsKizzo

To launchsKizzo, use the following syntax.

sKizzo [OPTS] (FILE|DIR) [TIMEOUT]

where you have to provide:

1. An optional list of space-separated optionsOPTS. Such options are used to modify the
solving process and the input/output behavior of the solver. They are discussed in Sec-
tion 3.

2. A mandatoryDIR or FILE path:

(a) FILE , the full name (possibly with a path) of a DIMACS file containing the QBF
instance to be solved. The extension of this file has to be one of the following:
“ .qdimacs ”, “ .dimacs ”, “ .qcnf ”.

(b) DIR, the root of a directory subtree which is to be recursively visited. When you give
a directory as argument, the solver works inbatch mode. See Section 4.

3. An optionalTIMEOUT(in seconds). When a timeout is given,sKizzo works for no longer
than the specified amount of time, then gives up (exit code 30, see below).

Possibleexit valuesfor the command—returned to the program that calledsKizzo or to the shell
from which the solver was launched—are:

10 on TRUE instances

20 on FALSE instances

30 on timeout

40 on a “unable to decide” condition

-1 on unrecoverable internal error

-2 on I/O error or file not found.

-3 on commandline parse error

-4 on DIMACS parse error

-5 on a SIGBUS/SIGSEV crash

-6 on unmanaged out-of-mem conditions

These return codes are valid when one single instance is given as argument. For the return codes
in batch mode see Section 4.2.

4

3 Command-line options

Each option is identified by a small string beginning with the minus “-” sign. Some options are
followed by one or more optional or mandatory arguments. The order of options is not relevant.

3.1 Options that modify the personality of the solver

-style STYLE selects a solvingpersonality(see Section 6 and Section 5.1), whereSTYLE
is a string containing one or more of the following switches:

• Q, to enable ground QBF reasoning.

• S, to enable incomplete symbolic reasoning.

• R, to enable complete symbolic reasoning.

• B, to enable DPLL-like branching reasoning.

• G, to enable SAT-based reasoning.

By default, all the switches are enabled (equivalent to-style QSRBG). So, for example,
“ -style BS ” disables q-resolution based preprocessing, prevents the SAT solver from
being called, and forces complete symbolic rules not to be used.

Notice that—besides all the considerations related to the hybridization of different eval-
uation algorithms—theQ andS styles are not able to solve all the instances (they adopt
a refutationally incomplete inference rule set). TheG style is complete in principle, but
often its application cannot even be commenced (without at least aQ,S-based “prepro-
cessing”) due to exponential space requirements. Finally, theR style is complete, but
a pureR-based personality may fail to evaluate the instance due to mem-out problems.
Hence, depending on the combination of styles (personality) chosen and on the particu-
lar instance at hand, aunable to decideoutcome may result. By combining the different

styles,
∑5

i=1

(
5
i

)
= 31 personalities can be obtained.

-BS COOPcontrols the way theS style cooperates with theB style. In particular, this option de-
cides which symbolic rules (among those you have made active with the-use /-dontuse
switches) will be applied after each existential branching step.

COOPis one of the following strings:

none to disable all the symbolic rules, hence performing a pure branching
reasoning.

ucp to leave SUCP as the only active rule.

lazy to behave likeucp , but limiting the time spent in SUCP w.r.t. the time
required by branching.

nobin to leave all the rules active but the binary ones (SER,SHBR).

full to apply all the active symbolic rules after each existential branching
step.

By default, theucp style is adopted (-BS ucp). The support for all the cooperation styles
butnone anducp is experimental.

5

-SG WHENcontrols the condition under which the transitionS→G occurs. Such control is of
interest when the current formula is such that both styles could in principle be used (and
the user has some good idea about which one is the best).

WHENis one of the following strings:

asap to make the transition happenas soon asit is affordable to generate
and solve the propositional expansion—even if further symbolic simplific-
ations would be possible.

fix to prevent the transition from happening until every active symbolic rule
in the S state has reached thefixpoint2—even if the propositional expan-
sion of the current formula is already small enough for theG style.

auto to leavesKizzo decide when to switch. The heuristics used for this
decision is as follows:

1. if the ground expansion is not affordable (not enough memory), the
possibility of a switch is not taken into account at all;

2. if the ground expansion becomes “very small” the switch is triggered
immediately;

3. if the ground expansion is affordable but it is not not very small, the
symbolic reasoning is continued, but only so long as it is shrinking
further the size of the ground expansion in a “fast” way.

By default, theauto condition is adopted (-SG auto).

3.2 Options to tune theQ style (qbf reasoning)

-linear prevents quantifier tree reconstruction from being performed. The solver thus works
with the linear prefix of the input DIMACS instance. The effects of tree reconstruction VS
a linear prefix are discussed in [1, 5]. In general, there is no good reason to disable tree
reconstruction. By default, tree reconstruction is enabled.

-use RULE 1 [RULE2 RULE3...] disables all the inference rules butRULE1, RULE2, etc.,
whereRULEi is one of the following:

QUCPfor Quantified Unit Clause Propagation.

QPLE for Quantified Pure Literal Elimination.

QRESfor Q-resolution.

Q* for theQUCP, QRES, QPLErules.

By default, all the rules are enabled (equivalent to “-use Q* ”).

-dontuse RULE 1 [RULE2 RULE3...] enables all the inference rules butRULE1, RULE2,
etc., whereRULEi is like in the-use option.

2When using thefix switch, you’ll probably want to disable theR style, and possibly theSRESrule either. If you
don’t, you have to consider a slightly unnatural meaning for the word “fixpoint”. Indeed, if you disable neitherR nor
SRESthe fixpoint condition is only reached when the formula is decided (SRESis refutationally complete), hence the
ground expansion never takes place unless an out-of-memory condition makes it necessary to abandon theR style in
favor of theG one. If you disableR but notSRES, the fixpoint is reached when all the refutationally incomplete rules
have reached their fixpoint and theSRESrule—in theboundedversion applied duringS–is not able to shrink the formula
any more. See Section 6.3 and Section 5.2 for more details.

6

3.3 Options to tune theS style (incomplete symbolic reasoning)

-use RULE 1 [RULE2 RULE3...] disables all the inference rules butRULE1, RULE2, etc.,
whereRULEi is one of the following:

SUCP for Symbolic Unit Clause Propagation.

SPLE for Symbolic Pure Literal Elimination.

SPLEi for Incremental Symbolic Pure Literal Elimination.

SSUB for Symbolic Subsumption.

SER for Symbolic Equivalence Reasoning.

SHBR for Symbolic Hyper Binary Reasoning.

SRES for Symbolic Directional Resolution.

S* for theSUCP, SPLE(i), SER, SHBR, SRES, SSUBrules.

By default, all the rules are enabled (equivalent to “-use S* ”).

-dontuse RULE 1 [RULE2 RULE3...] enables all the inference rules butRULE1, RULE2,
etc., whereRULEi is like in the-use option.

-pre X 1:Y 1 [X 2:Y 2 ...] constraints the order in which symbolic rules may be executed.
EachXi and eachYi is the name of a rule (amongSUCP, SPLE, SPLEi , SSUB, SER,
SHBR, SRES). The switch-pre X:Y prevents the application of ruleY so long as the
rule X has not reached its fixpoint. Put it another way: The fixpoint ofX is a precondition
to applyY. For example,-pre SUCP:SER allows to perform symbolic equivalence reas-
oning only after all the symbolic unit clauses have been propagated. You can set multiple
precedences (in one single-pre statement), but be aware that no loop occurrence check
is performed, so you may drive the solver into a deadlock.

When no precondition is given, rules are applied regardless of their relative fixpoint status.
In general, this enables a more flexible behavior. Sometimes, a specific order of application
yields (far) better results than others.

By default, only one precedence is enforced, namely that symbolic hyper-binary reason-
ing is not attempted so long as there is some unit clause around (equivalent to “-pre
SUCP:SHBR”).

-nopartial avoids splitting clauses by partial subsumption. When a symbolic clause is only
partially subsumed duringSSUBor by any symbolic assignment, just do nothing. The non-
splitting behavior increases the redundancy in the formula (the ground expansion contains
replicated clauses), but keeps the symbolic representation more compact. The tradeoff
seems generally in favor of splitting clauses. By default, partial subsumption splits clauses.

-hbdd [’0’..’7’ ’:’] ’0’..’19’ is used to select both the heuristics for the initial
variable ordering in the BDD manager, and the heuristics for dynamic reordering. The
syntax-hbdd S:R gives both the initial ordering ruleS ∈ {0, . . . , 7} and the reordering
styleR∈ {0, . . . , 19} to be used. If you only provide one argument (e.g.:-hbdd R) you
are selecting the reordering heuristics, while the initial ordering rule defaults to the value0
(this is for backward compatibility with the syntax of the solver up to version0.7.1, where
the initial ordering was not configurable).

sKizzo uses the CUDD package [10] as a core tool to manage binary decision diagrams.
The CUDD implements a number of reordering heuristics, and theRvalue just tellssKizzo

7

which heuristics is to be selected in the CUDD. An actual reorder is explicitly triggered
by sKizzo on certain occasions, and left to the auto-reordering CUDD’s facility in other
cases. The integerR ∈ {0, . . . , 19} selects a dynamic reordering heuristics according to
the following table:

0 dynamic reordering is disabled

1 CUDD_REORDER_RANDOM

2 CUDD_REORDER_RANDOM_PIVOT

3 CUDD_REORDER_SIFT

4 CUDD_REORDER_SIFT_CONVERGE

5 CUDD_REORDER_SYMM_SIFT

6 CUDD_REORDER_SYMM_SIFT_CONV

7 CUDD_REORDER_WINDOW2

8 CUDD_REORDER_WINDOW3

9 CUDD_REORDER_WINDOW4

10 CUDD_REORDER_WINDOW2_CONV

11 CUDD_REORDER_WINDOW3_CONV

12 CUDD_REORDER_WINDOW4_CONV

13 CUDD_REORDER_GROUP_SIFT

14 CUDD_REORDER_GROUP_SIFT_CONV

15 CUDD_REORDER_ANNEALING

16 CUDD_REORDER_GENETIC

17 CUDD_REORDER_LINEAR_CONVERGE

18 CUDD_REORDER_LAZY_SIFT

19 CUDD_REORDER_EXACT

See the CUDD documentation [10] for the modus operandi of each heuristics. The ini-
tial ordering (which is maintained during the whole evaluation if dynamic reordering is
disabled) is selected by the value of theS ∈ {0, . . . , 7} argument. Each value selects a dif-
ferent rule for placing universal variables at different decision levels of the BDD manager.
Such rules operate by analyzing either the quantifier tree or the matrix. In particular:

0 (BDD_ORDERING_LEFT_TO_RIGHT), universal variables are ordered
as they show up by reading the prefix in a left-to-right way (the first vari-
able is placed at level 0, the second at level 1, and so on).

1 (BDD_ORDERING_RIGHT_TO_LEFT), universal variables are ordered
as they show up by reading the prefix in a right-to-left way (the last variable
at level 0, the last but one at level 1, and so on).

2 (BDD_ORDERING_INCREASING_U_DEPTH), universal variables are
ordered according to their universal depth in the quantifier tree (the higher
the depth, the higher the decision level). Variables with the same universal
depth are left in the same relative order as in the prefix.

3 (BDD_ORDERING_DECREASING_U_DEPTH), like the previous rule, but
the higher the depth, the lower the decision level.

4 (BDD_ORDERING_INCREASING_SPLITBALANCE), universal variables
are ordered according to how well balanced is the number of clauses con-
taining the positive literalv (let us callN+(v) such number) against the
number of clauses containing the negative literal¬v (N−(v)). The higher

the value of0 ≤ min(N+(v),N−(v))
max(N+(v),N−(v)) ≤ 1 the lower the level ofv.

8

5 (BDD_ORDERING_DECREASING_SPLITBALANCE), like the previous
rule, but here the more balanced a variable is, the higher the level it takes.

6 (BDD_ORDERING_INCREASING_WIGHTED1_SPLITBALANCE), the
higher the value of(N+(v)×N−(v)) the lower the level ofv.

7 (BDD_ORDERING_DECREASING_WIGHTED1_SPLITBALANCE), the
higher the value of(N+(v)×N−(v)) the higher the level ofv.

In most cases, reordering makes it possible to solve an otherwise unaffordable instance.
The best reordering heuristics depends on the instance at hand. However, reordering may
sometimes consume more time than it saves. By default,CUDD_REORDER_GROUP_SIFT
is applied for dynamic reordering, andBDD_ORDERING_LEFT_TO_RIGHTfor the ini-
tial ordering (equivalent to-hbdd 0:13).

-hucp [0..10] selects an ordering heuristics to be used during symbolic unit clause propaga-
tion (SUCP). Given a symbolic formula with more than one symbolic unit clause—on
which SUCP is about to operate—this heuristics is responsible for choosing the next one
to be propagated. The integer value immediately following the-hucp option selects a
heuristics according to the following table:

0 (SYMB_CNF_UCP_HEURISTICS_RND), follow a random order

1 (SYMB_CNF_UCP_HEURISTICS_RECENT), focus on recently generated
unit clauses

2 (SYMB_CNF_UCP_HEURISTICS_RIGHT_TO_LEFT), follow the right-
to-left order of existential variables in the prefix

3 (SYMB_CNF_UCP_HEURISTICS_LEFT_TO_RIGHT), follow the left-to-
right order of existential variables in the prefix

4 (SYMB_CNF_UCP_HEURISTICS_MAX_U_DEPTH), choose the unit clause
with the maximal universal depth

5 (SYMB_CNF_UCP_HEURISTICS_MIN_U_DEPTH), choose the unit clause
with the minimal universal depth

6 (SYMB_CNF_UCP_HEURISTICS_MAX_GROUND_SIZE), choose the sym-
bolic unit clause that represents the maximal number of ground unit clauses

7 (SYMB_CNF_UCP_HEURISTICS_MIN_GROUND_SIZE), choose the sym-
bolic unit clause that represents the minimal number of ground unit clauses

8 (SYMB_CNF_UCP_HEURISTICS_MAX_BDD_SIZE), choose the symbolic
unit clause with the largest representation for the BDD component.

9 (SYMB_CNF_UCP_HEURISTICS_MAX_BDD_SIZE), choose the symbolic
unit clause with the smallest representation for the BDD component.

10 (SYMB_CNF_UCP_HEURISTICS_MIN_RESOLVED_CLAUSE_LENGTH),
choose the unit clause for which is minimal the maximal existential length
of the symbolic clauses which will be resolved.

Notice that in the purely existential case (SAT) the issue of selecting a suited ordering
heuristics for unit clauses is rarely if ever raised, as (1) unit clause propagation is a conflu-
ent process, (2) watched-literal based data structures support very fast inferences, and (3)
the order of propagation makes no significant difference to performance. Conversely, in
the symbolic framework watched literals are not used because the bottleneck is usually in
BDD-based computation. Moreover, intermediate results may considerably differ in size,
depending on the ordering chosen for unit clause elimination (even if the process stays
propositionally confluent). This makes the selection of a good heuristics a sensible choice
on certain families (those on which most solving time is spent in SUCP).

9

By default,SYMB_CNF_UCP_HEURISTICS_LEFT_TO_RIGHTis applied (equivalent
to -hucp 3).

Note: Previous versions of the solver (up to v. 0.6.1) did not expose this switch. They used
to haveSYMB_CNF_UCP_HEURISTICS_MINIMIZE_RESOLVING_CLAUSE_LIST_LENGTH

as an internal default value for this option (-hucp 10).

3.4 Options to tune theR style (complete symbolic reasoning)

-hdres HEUR selects a heuristics to be used during symbolic directional resolution (SRES)
to choose the ordering of variable elimination.HEURis one of the following:

rnd to eliminate variables in a random order

resolvents to eliminate the variable that generates the minimal number of re-
solvent clauses (greedy evaluation)

udepth to eliminate the variable that causes the maximal reduction in the av-
erage universal depth of the set of resolvent clauses

By default, the number of resolvent clauses is minimized (-hdres resolvents).

3.5 Options to tune theB style (branching reasoning)

-learning L adjusts the maximal size for the set of learned symbolic clauses. The symbolic
clause learning mechanism used in theB style learns new clauses on closed branches.
The maximal number of learned clauses managed at once is equal toL·|F |, whereL is an
integer (<=10) and|F | is the number of clauses in the original QBF formula. For example,
a -learning 2 directive allows the reasoning engine to retain up to 200 learned clauses
while solving a 100-clause formula. When the limit on learned clauses is reached and there
is a new learned clause to be added, the leastrelevantin the current set is discarded. The
inverse of the number of literals in each clause is assumed as a measure of relevance.

A -learning 0 directive completely disables symbolic learning: It is equivalent to the
former -nolearning switch (up to v. 0.6.1). Conflict-directed backjumping is unaf-
fected (it cannot be disabled at present). By default,L is equal to 1.

3.6 Options to tune theG style (SAT-based reasoning)

-solver NAME selects the SAT solver to be used in theG style. In the present releaseNAME
can be one of the following:

auto for solver auto-selection (see below).

minisat to select the solverminisat , v.1.14.

siege to select the solversiege , v.4.

zchaff to select the solverzChaff , v. 2004.5.13.

Besides the solving strengths and weaknesses of each solver, notice the following differ-
ences among the three options:

10

minisat (v. 1.14) is distributed in source format. It is statically linked3 against
sKizzo, so you need nothing particular to execute it. The extraction of an
unsatisfiable core is not directly supported by minisat, so when theG style
is reached from theB style a “blind” backtrack is performed4. This prob-
lem does not arise when theG style is reached from eitherQ or S / R.

siege (v. 4) is distributed in executable format only [9]. It is used as an ex-
ternal, balck-box solver, and is executed in a separate process.Siege is
not distributed withsKizzo. So, you have to download that solver on your
own (from [9]), then make sure that the “siege_v4 ” executable is reach-
able through the PATH environment variable. Thesiege solver does not
extract unsatisfiable cores, and this might impact on the backtracking ef-
fectiveness of the branching engine when theG style is reached from theB
style (conversely, whenG is reached from previous styles, only one SAT-
equivalent instance is generated, and the core extraction technique plays
no role). No Mac/OsX version of thesiege executable is distributed, so
the-solver siege option cannot be used on such platform.

zChaff (v. 2004.5.13) is distributed in source format. It is statically linked5

againstsKizzo, so you need nothing particular to execute it. When theG
style is reached from theB style, an unsatisfiable core is extracted (through
the statically linked “dverify ” tool that comes withzChaff) at each
contradictory branch. The analysis of this core is used to help the back-
tracking symbolic engine to perform smarter choices.

By default, theauto setting is used. This amounts to useminisat in all the occasions
but when theB style is reached and it needs splitting over an existential variable beforeG
is visited. In the latter case, the auto-selection mechanism switches tozChaff for the rest
of the process. The reason for this is that the cooperative conflict analysis (made possible
by the unsatisfiable core extraction) is only effective after at least one existential split has
been performed: in all the other cases the very first UNSAT answer of the SAT solver
decides the QBF instance.

3.7 Options to control memory usage

-mem STYLE selects a memory exploitation style. STYLE is one of the following:

nocheck to disable memory consumption check.
light to enable a memory consumption check style that uses all the free

memory as reported byvmstat .
heavy to enable a memory consumption check style that uses all the free

memory and minimize the inactive memory as reported byvmstat .

By default, thelight style is adopted. Notice that:

• When memory consumption check is disabled (nocheck option)sKizzo
allocates as much memory as required by the current solving style and
inference rule, regardless of the amount of RAM memoryphysicallyavail-
able and currently free. The VM module of the operating system is made

3Minisat’s license allows users to do so, provided they report a suited copyright notice. We honor the request in
Appendix A.

4The next release ofsKizzo will address this issue.
5Permission granted by zChaff’s author, see Appendix A.

11

responsible for swapping to/from disk when physical memory is exhausted.
As solvers keep on referring to the whole allocated memory, thenocheck
option may result in trashing conditions, with very low CPU usage and
high I/O throughput. In addition, those transitions between inference styles
that are triggered by detecting low-memory conditions (for example, the
transition fromR to B) are prevented.

• The light option makessKizzo worry about memory consumption on
behalf of the OS. As soon as the OS reports that all the physical memory
has been allocated (nofree pages left),sKizzo stops requiring further
memory allocation. This entails that (1) trashing conditions are avoided,
and (2) if the current rule/style cannot execute anymore as a consequence
of the enforced memory restrictions, a transition is triggered (theR→B
transition is a prototypical example). In essence, this option attempts to
use the available memory at its best, shifting from memory-intensive com-
putation to CPU-intensive computation when necessary. However, it may
fail to work because of the way free memory is managed by the OS. In
particular, two conditions under which this option may (heavily) underes-
timate the amount of memory that can be safely allocated are: (1)sKizzo
is running on a machine with “few” memory (0.5GB or less), (2) memory-
eager processes other thansKizzo are running (even if inactive).

• Theheavy option should be used when one or both the conditions above
occur. Theheavy option causesKizzo to stop allocating memory only
when there are no moreinactivepages associated to other processes. This
leads to a more intensive memory exploitation, but under many circum-
stances it may require a great deal of I/O work.

3.8 Options to makesKizzo stop on certain occurrences

-dontdescend prevents recursive processing of subdirectories in batch mode. See Sec-
tion 4.1.

-giveup instructs the solver to give up after the first instance in a family is found unsolvable
(for batch mode only). See Section 4.3.

-timeout T makes the solver work for no longer thanT seconds on each instance. This option
is redundant in the single-instance processing mode, as it is equivalent the last command-
line parameter of Section 2 (the latter being the standard way to give a timeout to most
solvers). However, this switch is useful in the batch mode to select different timeouts for
different families using a configuration file (see Section 4.3).

-treeonly prevents the solver from solving the instance:sKizzo just reconstructs the quanti-
fier tree and prints a brief report tostdout , then exits (thus acting mostly like theqTree
tool [2]). By default, the whole solving process is enabled.

3.9 Options to control verbosity, dumping, logging

-dimacsout disables the standard output behaviour of the solver, and makes it comply with
the DIMACS 1.1 output specification (notice:partial certificatesare not dumped at present).
By default, the solver uses its own output format.-dimacsout disables the-v switch.

-dump DATA dumps to file the information “DATA” (obtained at the beginning, during or at
the end of the solving process), whereDATAis a string selecting what to dump according
to the following table:

12

tree dumps a DOT representation of the initial quantifier tree. Leaves are house-shaped.
They do not list all the clauses, but just report how many clauses are there.

trees works like “tree ”, but beyond the initial quantifier tree also dumps (in separate
files) the sequence of trees obtained by ground QBF pre-processing (if enabled).

TREE works like “tree ”, but attaches a detailed clause list at the leaves (to be used for
small formulas only).

TREES works like “trees ”, but attaches a detailed clause list at the leaves (to be used
for small formulas only).

dimacs dumps to file in DIMACS format each SAT instance generated and solved (if
any) in theGstatus.

report dumps reports during a batch processing. See Section 4.6.

flatreport dumps reports during a batch processing. See Section 4.6.

The names of the files used to dump information are chosen as follows.

• The files used to dump trees and DIMACS instances have the same name and posi-
tion in the file system as the “.qdimacs ” file they refer to, with just an additional
“ .qtree.dot ” extension for quantifier trees, and “.dimacs ” for SAT instances.
If multiple “ .qtree.dot ” and/or “.dimacs ” files are generated from the same
instance, a progressive sequence number is appended between the original file name
and the.qtree.dot or .dimacs extension.

By default, no dumping to file is performed.

-log [TYPE] instructs the solver to produce an inference log recording the whole solution
process. The log is to be used by theozziKs companion application.TYPEis an optional
argument. It can be:

text to record the log in a purely textual format.

bin to record the log in a mixed textual/binary format.

The former option produces a human-readable format, and as such is useful for debug
purposes, the latter create logs that require much less space.ozziKs is able to distinguish
the two formats by inspecting the log. By default, no inference log is written. With no
argument,-log generates an inference log in textual format.

-v [0..9] controls the output verbosity. The value “0” makes the solver absolutely silent,
so that the only output is the return value. The value “1” makes the solver give just a
TRUE/FALSE feedback for each solved instance. This is the default. Higher values cause
sKizzo to expose a part of its internal status as the evaluation goes on.

3.10 Miscellaneous options

-copyright prints copyright and license notes (see Appendix A).

-help OPT gives you help on the command-line optionOPT(a short version of the informa-
tion you find in this manual).

-version printssKizzo’s version.

13

4 Batch mode

When you launchsKizzo giving a subdirectory as an entry point (rather than a single QDIMACS
file), the solver operates inbatch mode. It traverses the whole directory subtree rooted at the given
entry point, processing each QDIMACS file encountered during the visit.

There are a few behaviors specific to the batch mode, and some differences w.r.t. the single-
instance mode. They are discussed in the following subsections.

4.1 Order of processing

The order in which multiple instances are processed complies with following rules.

• Directories are traversed recursively, in a depth-first way.

• The solution process takes place in post-order (before visiting nested directories).

• Instances in each directory are first sorted according to the number of variables they contain
(through a pre-parsing of all the DIMACS files, and regardless of their file names). Then,
they are solved in a smallest-to-greatest order.

The recursive descent into deeper directories can be prevented by using the-dontdescent
option. Only the instances in the root of the directory tree given as entry point are processed.

4.2 Return values

In batch mode,sKizzo returns the number of instances successfully solved (i.e. those solving
which no timeout or error occurred). Some error codes are also used. The full list of possibilities
is the following.

-1 on unrecoverable internal error

-2 on I/O error or file not found.

-3 on commandline parse error

n (≥ 0): the number of instances successfully solved

4.3 Timeouts

WhensKizzo is required to traverse a directory subtree and a timeout is specified, it works for
no longer than the specified amount of timeon each instance, then moves on to the next instance.

Additionally, the-giveup option can be used to skip one entire family when a timeout occurs.
More precisely,-giveup instructs the solver to give up after the first instance in a family is found
unsolvable:

• Each directory is supposed to contain a set of increasingly complex instances from a para-
metrically scalable family.

• As usual, such instances are first sorted according to the number of variables they contain,
then solved in order.

• The very first failure (timeout, memout, crash, etc.) occurring during the solution process
causes the rest of the sequence in the current directory to be skipped.

• Solving is then re-started from the next directory.

14

This option—used in conjunction with a timeout—is mainly useful in limiting the time taken
by benchmarking, under the reasonable assumption that—fixed the structure of the family—the
larger the instance the longer the solving time.

By default, instance solving is attempted regardeless of previous outcomes over instances in
the same directory (family).

4.4 Interaction among solution processes

Interactions among different solution processes in the same batch execution are made as small as
possible, with the aim to avoid unwanted interferences that might negatively affect performance.
Launching the solver in batch mode should not give significantly different results w.r.t. executing
it on each instance separately.

The effects of possible memory leaking, improper object deallocation, bad re-initializations
etc. are limited by executing one small, carefully designed core process as a controller. It forks
in one (almost completely) fresh solver at each encountered instance.

4.5 Commandline parameters

If any commandline parameter is specified, it affects the solution process of every single instance.

You may override this default behavior by placing aconfiguration filenamed “sKizzo.conf ”
in a directory. Things work as follows.

• The options specified in thesKizzo.conf file contained in the directoryD are applied
(only) to the instances (immediately) withinD.

• There is no inheritance among configuration files. Each one is applied on top of the default
configuration. Conversely, the commandline options specified by the user while launching
the batch procedure are applied to all (and only) the instances contained in directories
without a configuration file.

• Each configuration file is made up of (one or more) lines. Each line specifies a setting to
be tried. Each setting is used against all the instances in the current directory.

• Every line in a configuration file has to contain a list of valid, space-separated options, just
as if they were commandline options. Lines exhibiting a syntax that does not comply with
the one given in Section 3 are skipped.

For example, suppose that the directoryD contains three instances and a configuration file:

adder-2-sat.qdimacs
adder-4-sat.qdimacs
adder-8-sat.qdimacs
sKizzo.conf

...and that the configuration files is made up of two lines:

-dontuse SPLEi SPLE -hbdd 9
-dontuse SPLEi SPLE SER -hbdd 1:0

sKizzo solves the three instances working as if the-dontuse SPLEi SPLE -hbdd 9
options were given at commandline, then solves again the three instances, this time working as
if the -dontuse SPLEi SPLE SER -hbdd 1:0 options were given.

15

4.6 Reporting

Thereport andflatreport arguments of the-dump switch enable the production ofreport file(s)
for the batch mode. The difference between the two arguments is as follows.

• The -dump report switch activates the dumping ofone textual report file for each (sub)
directory traversed. Each report file contains one line for each solved instance in the direct-
ory it refers to. Each line of a report file contains the following tab-separated information
on the solved instance:

1. name

2. number of existential variables

3. number of universal variables

4. prefix shape

5. number of alternations

6. time taken to solve (or: TIMEOUT)

7. memory required to solve (or: MEMOUT)

8. outcome (TRUE/FALSE/CRASH)

The files containing reports are placed in the directory containing the instances they refer
to, and are named after the directory itself, with an additional ".txt " extension. If a
directory contains a validsKizzo.conf file, then the report file for that directory will
contain one additional heading line (for each line in the configuration file) summarizing
the options under which the subsequent instances have been solved.

• The-dump flatreport switch is similar to thereport one, except that it producesonly one
textual report filecontaining the report lines of every solved instance. Such file is always
named “sKizzo_report.txt ” and is placed in the root of the directory subtree which
the user requested to traverse. To distinguish among instances belonging to different fam-
ilies/directories, the position in the directory subtree is written in the report before solving
the set of instances in that position. Some additional heading and tailing information is
added. A sample “flatreport” file is the following:

sKizzo_0.8 batch processing report file
started on Wed Oct 12 19:26:10 2005
options: -dump flatreport -timeout 10 ./sample_report/

Processing: "./sample_report/FALSE/Logn"
lognBWLARGEA1 1099 62820 E[270]AE[828] 2 3.07 23.5 FALSE
lognBWLARGEB1 1871 178750 E[396]AE[1474] 2 10 0.0 TIMEOUT

Processing: "./sample_report/FALSE/s27"
s27_d3_u 165 254 E[42]A[23]E[52] 2 0.65 4.9 FALSE
s27_d4_u 271 366 E[55]A[36]E[78] 2 1.20 5.0 FALSE
s27_d5_u 403 478 E[68]A[49]E[104] 2 2.01 4.8 FALSE

Processing: "./sample_report/FALSE/toilet"
TOILET6.1.iv.11 294 1046 E[77]A[3]E[214] 2 0.68 5.5 FALSE
TOILET7.1.iv.13 399 1491 E[104]A[3]E[292] 2 1.27 5.7 FALSE

Processing: "./sample_report/TRUE/counter"
cnt06 266 691 E[39]AE[39]AE[39]AE[39]AE[39]AE[39]AE[26] 12 0.40 5.8 TRUE
cnt06e 286 751 E[42]AE[42]AE[42]AE[42]AE[42]AE[42]AE[28] 12 4.23 6.6 TRUE
cnt06r 286 745 E[42]AE[42]AE[42]AE[42]AE[42]AE[42]AE[28] 12 2.09 6.0 TRUE
cnt06re 306 805 E[45]AE[45]AE[45]AE[45]AE[45]AE[45]AE[30] 12 5.89 6.2 TRUE

Processing: "./sample_report/TRUE/mutex"
mutex-2-s 559 127 A[8]E[96] 1 0.01 0.5 TRUE
mutex-16-s 3961 1779 A[64]E[1314] 1 0.10 1.0 TRUE
mutex-64-s 15625 7443 A[256]E[5490] 1 0.40 2.8 TRUE

16

Processing: "./sample_report/TRUE/s499"
Specific options: -dontuse SPLE SPLEi SHBR SSUB -hbdd 9
s499_d2_s 1213 2665 E[328]A[131]E[491] 2 0.43 6.1 TRUE
s499_d3_s 2545 4816 E[481]A[284]E[982] 2 1.40 7.5 TRUE
s499_d4_s 4368 6967 E[634]A[437]E[1473] 2 4.25 8.9 TRUE

batch processing finished
time now: Wed Oct 12 19:27:02 2005
16/17 instances successfully solved.

17

5 Notes on run-time behavior, memory consumption, solving
personalities

5.1 Tuning your solving personality

sKizzo is a hybrid solver incorporating a number of evaluation algorithms (see Section 6). Fur-
thermore, some inference styles (e.g.S, R) exploit many individually controllable inference
rules. Heuristics also play a great role in some cases. As a consequence, you have a lot of free-
dom in customizing the waysKizzo attacks your QBF instances (solving personality). This is a
good news, as long as either the solver (automatically), or you (manually) are able to find out a
suited configuration.

Commandline options give you means to fine control the solving personality. You don’t need to
use such options as long as the default behavior of the solver is ok for your instances. To a certain
extent, such default behavior is flexible and automatically adapts to different instance structures.
For example, the inference state machine briefly introduced in Section 6 allows the solver to
hybridizeinference styles in a way that depends directly (e.g. number of “cheaply” removable
variables, etc.) and indirectly (e.g. memory requirement of resolution-based reasoning, etc.) on
the particular instance (see also Section 5.2). Furthermore, a learning approach is employed to
try to guess the optimal switch point between inference styles (e.g. fromB to G), the optimal
resource allocation (e.g. relative execution time for each symbolic rule), and more.

When all this fails, you should resort to manual adjustment6: In our experience,a failure (timeout)
with the default configuration doesn’t imply that the solver is unable to solve the instance at hand.

The degrees of freedom of the auto-adjusting capability of the solver are limited to the switch
between inference styles and the resource allocation among rules. The manual counterpart to
these auto-adjusting features are the-style , -use , and-dontuse options. However, some
modifications to the solving behavior can be obtained only manually. For example, those con-
trolled by the-learning , -hbdd , -hdres , -hucp , and-memoptions. A “-style QSBG
-dontuse SRES ” configuration causes the solver to behave quite differently from a “-style
QR” customization, which is in turn different from “-style SR -dontuse SHBR SER ”.

Finally, notice that even if the automatic settings work, you might be able to find out a
configuration of the parameters that yields better results on your instances (due at least to the
removed overhead of some trial-and-error behaviors of the automatic engine).

5.2 Memory consumption

To perform at its best in different execution environments,sKizzo tries to adapt to the available
computational resources (CPU speed and free memory available). It keeps on measuring these
quantities, then takes some (important) decisions on the basis of what has been measured. As a
side effect, it is to be taken into account that:

• No two runs of the solver are exactly the same (nor even on the very same instance/machine).
The algorithm is deterministic, but it takes as inputs unpredictable and fluctuating values
from the computational environment, thus exhibiting anon-deterministicbehavior.

• Other processes in execution might interfere withsKizzo in unpredictable manners. Their
CPU and memory occupation affects the behavior of the solver. For example, an external
processP that allocates much memory may cause symbolic directional resolution to run
out of memory (and, consequently, it may causesKizzo to switch to branching reasoning),
whereas symbolic directional resolution would have decided the instance ifP were not
running. Similar effects might (noticeably) affect performance.

6Future versions of this documentation will contain guidelines on how to attempt personality tuning.

18

• Counterintuitive effects sometimes arise due to suboptimal resource management: An in-
stance in a parametrically scalable family of instances might be solved in less time than a
smaller instance of the same family.

5.3 Shell commands

sKizzo relies on the existence of a/bin/sh shell to launch a few commands (ps , vmstat ,
and so on) used to perform self-monitoring. Failing to launch such commands might prevent
sKizzo from working properly.

5.4 Multiprocessing

sKizzo forks into two processes at the very beginning, one performing the real job, the other
measuring mem/time usage, catching crashes and recursively traversing directories and selecting
instances to solve if required. This is the reason why possible crashes/segfaults are dealt with as
“regular” errors, and also the reason why killing onesKizzo’s process may not stop the whole
thing.

19

6 sKizzo ’s internals

In this section we give a very brief introduction to the data structures and algorithms employed
by sKizzo. We aim at providing the user with the information necessary to understand some
peculiar commanline options of the solver, such as the-style and-use options.

For a more in-depth presentation of the matter, we refer the reader to:

• [1] for a description of an early version of the solver, with algorithms and data structures.

• [2] for experimental results and up-to-date software releases.

• [3] for a presentation of the symbolic skolemization technique.

• [4] for the approach to QBF satisfiability certification.

• [5] for quantifier tree reconstruction.

• [6] for a discussion of how the solver hybridizes different solving styles.

6.1 Overview

At the hearth ofsKizzo stays asymbolicrepresentation for clauses and formulas, based onBinary
Decision Diagrams(BDDs)7. As opposed to other BDD-based approaches to propositional logic,
sKizzo’s one employs a two-level data structure [1] purposely designed to take advantage of the
distinguishing features of quantified propositional formulas. A symbolic formula to be managed
and solved is obtained from the input QBF through the symbolic skolemization technique [3].
Such symbolic representation coexists with other kinds of representations and data structures
within sKizzo, such as quantifier trees [5]. They are briefly discussed in Section 6.2.

Besides allowing for a purposely designed kind ofsymbolicreasoning, our symbolic rep-
resentation makes it possible to unify within a coherent framework many other approaches to
QBF-satisfiability proposed so far. Namely: DPLL-like branching reasoning, q-resolution based
algorithms, and compilation-to-SAT techniques. The role of these evaluation strategies within
sKizzo is briefly addressed in Section 6.3.

6.2 Problem Representation

sy
m

bo
lic

sk
ol

em
is

at
io

n
gr

ou
nd

is
at

io
n

Prenex
QBFs (CNF)

Symbolic
Formulas

Prop. CNF
instances

Three representation spaces for QBFs coexist withinsKizzo. They are inter-
connected by two satisfiability-preserving trasformations (applied one-way), as
reported in the picture aside. The first transformation leveragesouter skol-
emizationto map any (prenex CNF) instanceF ∈ QBFs onto asymbolic
formula F = SymbSk(F), which is said to besymbolicas it couples list-
based and BDD-based data structures to compactly represent a (possibly) ex-
ponentially less succinct propositional formula. The sentenceF encodes the
definability of a set of Skolem functions that capture a model (if any) of the
original instance, according to thesymbolic skolemizationtechnique presented
in [3]. A formal semantics is associated to symbolic formulas in such a way that

F
sat≡ SymbSk(F) for everyF . The other transformation—calledgroundisa-

tion—translates a symbolic formulaF into a purely existential CNF propos-

itional instanceProp(F) (a SAT problem) such thatF
sat≡ SymbSk(F)

sat≡
Prop(SymbSk(F)). The role of these representations is as follows: Plain
QBFs are handled in a pre-processing phase. Then,sKizzo moves to the sym-
bolic representation and performs most of its work thereon. Zero or more CNF
instances are generated/solved during the whole process.

7We employ the CUDD package [10], version 2.4.0, and the DDDMP package [8], version 2.0.3.

20

∧

∀a∀a

∀b

∃f

∃c

∀d∀e

∃g∃h

a∨¬c

c∨¬d∨g
c∨a∨¬g

a∨h
¬a∨c∨e∨¬h

¬b∨¬f
¬a∨b∨f

[h]
a

0 1

e

0 1

a[c,¬h]

Symbolic skolemization (and most of the processes
introduced below) relies on the existence of aquantifier
tree stating which existential variables are in the scope
of which universal variables. Such tree-shaped structures
are extracted out of the flat prenex input according to [5].
They replace linear prefixes so to more closely reflect the
intrinsic dependencies in the matrix. A sample quantifier
tree for the QBF∀a∀b∃c∀d∀e∃f∃g∃h.(a∨¬c) ∧ (a∨h) ∧ (c∨
¬d∨g) ∧ (¬a∨b∨f) ∧ (¬a∨c∨e∨¬h) ∧ (¬b∨¬f) ∧ (a∨c∨¬g)

is depicted aside. The symbolic representation is designed
to allow for efficient forms ofsymbolic reasoning, where
universal reasoning is taken apart form existential reas-
oning (ROBDDs conveniently deal with the former, list-
based representations with the latter). A symbolic formula
is made up by symbolic clauses. During symbolic skol-
emization, one symbolic clause is extracted out of each
QBF clause. The two major components of a symbolic
clauseΓI are a listΓ of existential literals and an index-
setI represented via a ROBDD whose support set is the
set of universal variables dominating the existential node

at which the clause is attached in the quantifier tree. For example, the symbolic clauses[h]{00,01}
and [c,¬h]{10} are extracted out ofa ∨ h and ¬a ∨ c ∨ e ∨ ¬h respectively (see the pic-
ture). Each symbolic clauseΓI compactly represents a setProp(ΓI) (with cardinality |I|)
of ground propositional clauses, in such a way thatF is sat iff Prop(F) is sat. For example,
Prop([c, g]{01,10}) = {c0 ∨ g01, c1 ∨ g10}. For details, see [1, 3].

6.3 Inference Strategy

The inference strategyfollowed bysKizzo changes as the solution process goes on. Its evolu-
tion is described by a finite state machine whose inference statesSinf = {G, S, R, B, G} are
traversed.

Q: Ground
 QBF
 Reasoning

S: Incomplete
 Symbolic
 Reasoning

B: Symbolic
 Branching
 Reasoning

G: SAT-based
 CNF
 Reasoning

R: Complete
 Symbolic
 Reasoningsy

m
bo

lic
sk

ol
em

is
at

io
n

gr
ou

nd
is

at
io

n

Each state inSinf is associated to the application of aninference style. Each transitionx → y
in the picture,x, y ∈ Sinf , is labeled by a condition that triggers the shift from the stylex
to y (possibly requiring a satisfiability-preserving transformation). The conditions under which
transitions between one state and another are triggered is documented in [6]. The-style option
can be used to forbid the visit of certain states, thus customizing thepersonalityof the solver.

Q: Ground QBF Reasoning. In the Q-statesKizzo works in the original QBF space. The
quantified form of three simple (incomplete) inference rules—unit clause propagation(QUCP),
pure literal elimination(QPLE)), andforall-reduction—is applied until fixpoint. Then, a quan-
tifier tree for the current formula is reconstructed. Finally,q-resolution(QRES) is applied to
eliminate the “cheap” existentially quantified variables in the deepest existential scope of each
branch. The cycle is repeated until no cheap existential variable exists.

S: Incomplete Symbolic Reasoning. The instance is attacked by means of a set of (incom-
plete)symbolic inference rules, designed to perform efficient symbolic deductions.

21

SUCP (Symbolic Unit Clause Propagation). Unit clauses are symbolically com-
puted and assigned all at once.

SPLE (Symbolic Pure Literal Elimination). A symbolic representation for the set
of pure literals is computed, and the formula is accordingly simplified.

SSUB (Symbolic SUBsumption). This rules removes all the symbolic clauses that
are subsumed by other clauses (forward subsumption). This rule comple-
ments thebackward subsumptionmechanism which is applied on-the-fly at
each clause insertion.

SHBR (Symbolic Hyper Binary Resolution). This rules enumerates all the resolu-
tion chains of binary symbolic clauses in the formula, looking for contradic-
tions, hence for implied symbolic literals.

SER (Symbolic Equivalency Reasoning). This rules look for non-empty strongly
connected components in thesymbolic binary implication graph[1] of the for-
mula. Each such component determines a symbolic equivalence which is ap-
plied to simplify the formula.

The -use and-dontuse options can be used to disable some of these rules. Notice that the
above set of rules is not refutationally complete. One additional, refutationally complete rule is
applied in this state (in a limited form), as explained in theR state.

R: Complete Symbolic Reasoning. This state is similar toS, with one major exception: (the
full form of) a refutationally complete rule is inserted in the pool of symbolic rules exercised at
each inference round. Namely:

SDR (Symbolic Directional Resolution). This rules eliminates one symbolic variable per step
by substituting the set of resolving clauses with the set of their symbolically computed
resolvents.

The relation betweenS andR is a bit more complicated than it seems:SDR is used also in
S, but in a limited form. In fact, the execution ofSDR within S is performed in acontrolled
environmentthat involves a rollback whenever the rule is unable to shrink the formula without
exceeding certain time/memory resources. Such limitation is removed in theR state.

B: Branching Reasoning. In this status, a recursive search-based branching decision proced-
ures extending the DPLL approach to the quantified case is applied. Both universal and existen-
tial splits are performed symbolically. The partial order induced by the internal structure of the
quantifier tree is substituted for the left-to-right order of variables in the prefix. Either symbolic
reasoning or ground reasoning (see theG status) are leveraged as look-ahead tools to decide
base cases of the recursion. A conflict-analysis machinery is employed in the event of inconsist-
ent partial assignment to perform a conflict-directed backjumping. TheB, S, andG states share
a common conflict-analysis engine. A symbolic learning mechanism extracts symbolic clauses
out of contradictions (it can be disabled via the-learning 0 option). Branching heuristics
are enrolled (MOMS, VSDIS).

G: SAT-based Ground Reasoning. In theG-state we explicitly constructProp(SymbSk(F))
and solve it via some state-of-the-art SAT solver.

22

References

[1] M. Benedetti. sKizzo: a QBF Decision Procedure based on Propositional Skolemization
and Symbolic Reasoning, Tech.Rep. 04-11-03, ITC-irst, 2004.

[2] M. Benedetti. sKizzo ’s web site,sra.itc.it/people/benedetti/sKizzo ,
2004.

[3] M. Benedetti. Evaluating QBFs via Symbolic Skolemization. InProc. of the 11th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR04), number 3452 in LNCS. Springer, 2005.

[4] M. Benedetti. Extracting Certificates from Quantified Boolean Formulas. InProc. of 9th
International Joint Conference on Artificial Intelligence (IJCAI05), 2005.

[5] M. Benedetti. Quantifier Trees for QBFs. InProc. of the Eighth International Conference
on Theory and Applications of Satisfiability Testing (SAT05), 2005.

[6] M. Benedetti. sKizzo: a Suite to Evaluate and Certify QBFs. InProc. of 20th International
Conference on Automated Deduction (CADE05), 2005.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. Inproceedings of the 38th Design Automation Conference, 2001.

[8] S. Quer and G. Cabodi. DDDMP’s web page, fmgroup.polito.it/
quer/research/tool/tool.htm .

[9] Lawrence Ryan. The siege satisfiability solver, web page,
www.cs.sfu.ca/ loryan/personal .

[10] Fabio Somenzi. Colorado University Binary Decision Diagrams,
vlsi.colorado.edu/ ∼fabio/CUDD , 1995.

23

Appendix A: Copyright and License

Copyright
Copyright c© 2004-2005
Marco Benedetti

Definitions
• By "SOFTWARE" we mean the software "sKizzo" and the associated documentation files, which

are offered under the terms of this License.

• By "AUTHOR" we mean Marco Benedetti, i.e. the individual who created the SOFTWARE, and
who offers it under the terms of this License.

• By "USER" we mean an individual or entity exercising rights under this License who has not previ-
ously violated the terms of this License with respect to the SOFTWARE, or who has received express
permission from the AUTHOR to exercise rights under this License despite a previous violation.

• By "NONCOMMERCIAL USE" we mean use for research, evaluation, or development for the pur-
pose of advancing knowledge, teaching, learning, or customizing the technology for personal use.
NONCOMMERCIAL USE expressly excludes use or distribution for direct or indirect commercial
(including strategic) gain or advantage.

License
By using the SOFTWARE the USER indicates that he or she has read, understood and will comply with the
following:

• The AUTHOR hereby grants USER nonexclusive permission to use the SOFTWARE for NONCOM-
MERCIAL USE only.

• Permission to copy and redistribute the SOFTWARE is granted so long as no fee is charged, and so
long as the the present unmodified copyright notice (including the disclaimer below) appear in all
the copies made.

• For any other permission (including–but not limited to–the permission to use the SOFTWARE for
commercial purposes, the permission to create/distribute derivative or modified works, etc.) please
contact the AUTHOR atmabene@gmail.com .

Disclaimer
This SOFTWARE is provided "as is". The AUTHOR makes no representations or warranties, express or
implied, including those of merchantability or fitness for any purpose. The AUTHOR shall not be liable
under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect
to any claim by USER or any third party on account of or arising from the use, or inability to use, the
SOFTWARE.

Copyrights and Licenses for Third Party Software Distributed with the SOFT-
WARE
The SOFTWARE contains compiled code written by third parties. Such pieces of software have additional
or alternate copyrights, licenses, and/or restrictions. Namely, the SOFTWARE is statically linked against:

1. The CUDD package, version 2.4.0, by Fabio Somenzi (Department of Electrical and Computer En-
gineering, University of Colorado at Boulder). The CUDD package is copyright of the University of
Colorado at Boulder. The autoritative source of information on the CUDD is:
http://vlsi.colorado.edu/~fabio/CUDD/

24

2. The DDDMP-2.0 package, version 2.0.3, by Gianpiero Cabodi and Stefano Quer. The DDDMP
package is Copyright (c) 2002 by Politecnico di Torino. The autoritative source of information on
DDDMP is: http://staff.polito.it/stefano.quer/research/tool/tool.htm

3. zChaff, version 2004.5.13, a search-based SAT solver by the SAT Research Group at the Princeton
University. zChaff is Copyright 2000-2004, Princeton University, with all rights reserved. zChaff
is for non-commercial purposes only. No commercial use of zChaff is allowed withouth written
permission from Princeton University. Please contact Sharad Malik (malik@ee.princeton.edu) for
details. The autoritative source of information on zChaff is:

http://www.princeton.edu/~chaff/software.html

4. minisat, version 1.14, a SAT solver by Niklas Een and Niklas Sorensson. In compliance with min-
isat’s license, we include the following notes taken from the minisat official distibution (in the quoted
text below the word “Software” refers to minisat):

MiniSat – Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEAL-
INGS IN THE SOFTWARE.

The autoritative source for information on minisat is:

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

25

